1. ## Cartesian Product and Ordered and Unordered Pairs

A pair set is a set with two members, for example, {2, 3}, which can also be thought of as an unordered pair, in that {2, 3}={3, 2}. However, we seek a more a strict and rich object that tells us more about two sets and how their elements are ordered.

Tagged as : R set theory
2. ## Algebra of Sets with R

The set operations, union and intersection, the relative complement − and the inclusion relation (subsets) are known as the algebra of sets. The algebra of sets can be used to find many identities related to set relations.

Tagged as : R set theory
3. ## N-Union and Intersection Set Operations

Set unions and intersections can be extended to any number of sets. This post introduces notation to simplify the expression of n-sets and the set union and intersection operations themselves with R.

Tagged as : R set theory
4. ## Set Union and Intersections with R

The set operations 'union' and 'intersection' should ring a bell for those who've worked with relational databases and Venn Diagrams. The 'union' of two of sets A and B represents a set that comprises all members of A and B (or both).

Tagged as : R set theory
5. ## Introduction to Sets and Set Theory with R

Sets define a 'collection' of objects, or things typically referred to as 'elements' or 'members.' The concept of sets arises naturally when dealing with any collection of objects, whether it be a group of numbers or anything else.

Tagged as : R set theory

Page 1 / 1