Cartesian Product and Ordered and Unordered Pairs

Ordered and Unordered Pairs

A pair set is a set with two members, for example, \({2, 3}\), which can also be thought of as an unordered pair, in that \({2, 3}={3, 2}\). However, we seek a more a strict and rich object that tells us more about two sets and how their elements are ordered. Call this object ⟨2, 3⟩, which specifies that 2 is the first component and 3 is the second component. We also make the requirement that ⟨2, 3⟩≠⟨3, 2⟩. We can also represent this object, generalized as ⟨\(x\), \(y\)⟩, as:

$$ \large{\langle x, y\rangle = \langle u, v \rangle} $$

Therefore \(x = u\) and \(y = v\). This property is useful in the formal definition of an ordered pair, which is stated here but not explored in-depth. The currently accepted definition of an ordered pair was given by Kuratowski in 1921 (Enderton, 1977, pp. 36), though there exist several other definitions.

$$ \large{\langle x, y \rangle = \big\{\{x\}, \{x, y\} \big\}} $$

The pair ⟨\(x, y\)⟩ can be represented as a point on a Cartesian coordinate plane.

Cartesian Product

The Cartesian product \(A × B\) of two sets \(A\) and \(B\) is the collection of all ordered pairs ⟨\(x, y\)⟩ with \(x ∈ A\) and \(y ∈ B\). Therefore, the Cartesian product of two sets is a set itself consisting of ordered pair members. A set of ordered pairs is defined as a 'relation.'

For example, consider the sets \(A = {1, 2, 3}\) and \(B = {2, 4, 6}\). The Cartesian product \(A × B\) is then:

$$ A × B = {{1, 2},{1, 4},{1, 6},{2, 2},{2, 4},{2, 6},{3, 2},{3, 4},{3, 6}} $$

Whereas the Cartesian product \(B × A\) is:

$$ B × A = {{2, 1},{2, 2},{2, 3},{4, 1},{4, 2},{4, 3},{6, 1},{6, 2},{6, 3}} $$

The following function implements computing the Cartesian product of two sets \(A\) and \(B\).

cartesian <- function(a, b) {
  axb <- list()
  k <- 1
  for (i in a) {
    for (j in b) {
      axb[[k]] <- c(i,j)
      k <- k + 1
    }
  }
  return(axb)
}

Let's use the function to calculate the Cartesian product \(A × B\) and \(B × A\) to see if it aligns with our results above.

a <- c(1,2,3)
b <- c(2,4,6)

as.data.frame(cartesian(a, b))

##   c.1..2. c.1..4. c.1..6. c.2..2. c.2..4. c.2..6. c.3..2. c.3..4. c.3..6.
## 1       1       1       1       2       2       2       3       3       3
## 2       2       4       6       2       4       6       2       4       6

as.data.frame(cartesian(b, a))

##   c.2..1. c.2..2. c.2..3. c.4..1. c.4..2. c.4..3. c.6..1. c.6..2. c.6..3.
## 1       2       2       2       4       4       4       6       6       6
## 2       1       2       3       1       2       3       1       2       3

Both outputs agree to our previous results. One could also simply use the expand.grid() function like so to get the same result for the Cartesian product.

t(expand.grid(a, b))

##      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## Var1    1    2    3    1    2    3    1    2    3
## Var2    2    2    2    4    4    4    6    6    6

Some Cartesian Product Theorems

We can state some theorems related to the Cartesian product of two sets. The first theorem states:

If \(A\) is a set, then \(A × ⌀ = ⌀\) and \(⌀ × A = ⌀\).

We can demonstrate this theorem with our cartesian() function.

cartesian(a, c()) # c() represents the empty set.

## list()

cartesian(c(), a)

## list()

The outputs are an empty list which is equivalent to the empty set ⌀ for our purposes of demonstration.

The next theorem involves three sets \(A\), \(B\), \(C\).

  • \(A × (B ∩ C)=(A × B)∩(A × C)\)
  • \(A × (B ∪ C)=(A × B)∪(A × C)\)
  • \((A ∩ B) × C = (A × C) ∩ (B × C)\)
  • \((A ∪ B) × C = (A × C) ∪ (B × C)\)

We can demonstrate each in turn with a combination of our cartesian() from above, and the set.union() and set.intersection() functions from a previous post on set unions and intersections. The base R functions union() and intersect() can be used instead of the functions we defined previously.

a <- c(1,2,3)
b <- c(2,4,6)
c <- c(1,4,7)

The first identity $A × (B ∩ C) = (A × B) ∩ (A × C)%.

ident1.rhs <- cartesian(a, set.intersection(b, c)) # Right-hand Side
ident1.lhs <- set.intersection(cartesian(a, b), cartesian(a, c)) # Left-hand Side

isequalset(ident1.rhs, ident1.lhs)

## [1] TRUE

as.data.frame(ident1.rhs)

##   c.1..4. c.2..4. c.3..4.
## 1       1       2       3
## 2       4       4       4

as.data.frame(ident1.lhs)

##   c.1..4. c.2..4. c.3..4.
## 1       1       2       3
## 2       4       4       4

The second identity \(A × (B ∪ C)=(A × B) ∪ (A × C)\).

ident2.rhs <- cartesian(a, set.union(b, c))
ident2.lhs <- set.union(cartesian(a, b), cartesian(a, c))

isequalset(ident2.rhs, ident2.lhs)

## [1] TRUE

as.data.frame(ident2.rhs)

##   c.1..2. c.1..4. c.1..6. c.1..1. c.1..7. c.2..2. c.2..4. c.2..6. c.2..1.
## 1       1       1       1       1       1       2       2       2       2
## 2       2       4       6       1       7       2       4       6       1
##   c.2..7. c.3..2. c.3..4. c.3..6. c.3..1. c.3..7.
## 1       2       3       3       3       3       3
## 2       7       2       4       6       1       7

as.data.frame(ident2.lhs)

##   c.1..2. c.1..4. c.1..6. c.2..2. c.2..4. c.2..6. c.3..2. c.3..4. c.3..6.
## 1       1       1       1       2       2       2       3       3       3
## 2       2       4       6       2       4       6       2       4       6
##   c.1..1. c.1..7. c.2..1. c.2..7. c.3..1. c.3..7.
## 1       1       1       2       2       3       3
## 2       1       7       1       7       1       7

The third identity \((A ∩ B) × C = (A × C) ∩ (B × C)\).

ident3.rhs <- cartesian(set.intersection(a, b), c)
ident3.lhs <- set.intersection(cartesian(a, c), cartesian(b, c))

isequalset(ident3.rhs, ident3.lhs)

## [1] TRUE

as.data.frame(ident3.rhs)

##   c.2..1. c.2..4. c.2..7.
## 1       2       2       2
## 2       1       4       7

as.data.frame(ident3.lhs)

##   c.2..1. c.2..4. c.2..7.
## 1       2       2       2
## 2       1       4       7

We finish the post with the fourth identity \((A ∪ B) × C = (A × C) ∪ (B × C)\).

ident4.rhs <- cartesian(set.union(a,b), c)
ident4.lhs <- set.union(cartesian(a,c), cartesian(b,c))

isequalset(ident4.rhs, ident4.lhs)

## [1] TRUE

as.data.frame(ident4.rhs)

##   c.1..1. c.1..4. c.1..7. c.2..1. c.2..4. c.2..7. c.3..1. c.3..4. c.3..7.
## 1       1       1       1       2       2       2       3       3       3
## 2       1       4       7       1       4       7       1       4       7
##   c.4..1. c.4..4. c.4..7. c.6..1. c.6..4. c.6..7.
## 1       4       4       4       6       6       6
## 2       1       4       7       1       4       7

as.data.frame(ident4.lhs)

##   c.1..1. c.1..4. c.1..7. c.2..1. c.2..4. c.2..7. c.3..1. c.3..4. c.3..7.
## 1       1       1       1       2       2       2       3       3       3
## 2       1       4       7       1       4       7       1       4       7
##   c.4..1. c.4..4. c.4..7. c.6..1. c.6..4. c.6..7.
## 1       4       4       4       6       6       6
## 2       1       4       7       1       4       7

References

Enderton, H. (1977). Elements of set theory (1st ed.). New York: Academic Press.

MacGillivray, G. Cartesian Products and Relations. Victoria, BC. Retrieved from http://www.math.uvic.ca/faculty/gmacgill/guide/RF.pdf

Stacho, Juraj (n.d.). Cartesian Product [PowerPoint slides]. Retrieved from http://www.cs.toronto.edu/~stacho/macm101.pdf

Related Posts