1. Exploratory Data Analysis of Shelter Cat Outcomes with Pandas and Seaborn

    The following post walked through how to extract and transform the shelter outcome data to make it tidy and suitable for data analysis. In this post, we perform exploratory data analysis using pandas and seaborn to investigate and visualize the shelter outcomes of cats. The findings that are garnered from the exploratory data analysis step can help tremendously in the model building phase when we need to select the important features of the data.

  2. Extraction and Feature Engineering of Animal Austin Center's Shelter Outcomes Dataset using Requests and Pandas

    The Austin Animal Center, the largest no-kill municipal animal shelter in the United States, makes available its shelter animal outcomes dataset as patrt of the City of Austin's Open Data program. This post demonstrates how to extract the data from the City of Austin's Open Data portal using the requests library and convert the resulting JSON to a tabular pandas DataFrame. We will then enrich the data by applying feature engineering to the data to add more information, which should help improve the outcome prediction model.

Page 1 / 1