1. From Intake to Outcome: Analyzing the Austin Animal Center's Intake and Outcomes Datasets

    The Austin Animal Center provides its animal intake and outcome datasets on Socrata. When an animal is taken into the shelter, it is given a unique identifier that is also used in the outcomes dataset. We have already investigated and performed exploratory data analysis on the Austin Animal Center's intakes and animal outcomes individually and found several interesting facets of information. In this analysis, we merge the intakes and outcomes dataset using pandas to enable us to perform exploratory data analysis on the merged data. With the data merged, we will be able to explore in more depth the transition from intake to outcome.

  2. Austin Animal Center Intakes Exploratory Data Analysis with Python, Pandas and Seaborn

    The Austin Animal Center, the largest no-kill municipal shelter in the United States, makes available its collected data on Austin's Open Data Portal. This data includes both animals incoming into the shelter and the animals' outcome. In this post, we perform some exploratory data analysis on the intakes dataset to see if we can find any noticeable trends or interesting pieces of information of the data. First, we will extract the data from Austin's Data Portal, which is supported by Socrata. We will then perform some data transformation and cleaning steps to get the data ready for analysis.

  3. Extract and Analyze the Seattle Pet Licenses Dataset

    The city of Seattle makes available its database of pet licenses issued from 2005 to the beginning of 2017 as part of the city's ongoing Open Data Initiative. This post will explore extracting the data from Seattle's Open Data portal using requests, then transform the extracted JSON data into a workable dataset with pandas to analyze and investigate the pet license database.

  4. Predicting Shelter Cat Adoptions and Transfers with Scikit-learn and Machine Learning

    Following from the previous analyses of the Austin Animal Center's shelter outcomes dataset, we now take what we learned from the exploratory data analysis component of the investigation and build and train a machine learning model for predicting if a cat entering the shelter will be adopted or transferred to a partner facility. Adoptions and transfers make up about 90% of all the outcomes.

  5. Exploratory Data Analysis of Shelter Cat Outcomes with Pandas and Seaborn

    The following post walked through how to extract and transform the shelter outcome data to make it tidy and suitable for data analysis. In this post, we perform exploratory data analysis using pandas and seaborn to investigate and visualize the shelter outcomes of cats. The findings that are garnered from the exploratory data analysis step can help tremendously in the model building phase when we need to select the important features of the data.

  6. Extraction and Feature Engineering of Animal Austin Center's Shelter Outcomes Dataset using Requests and Pandas

    The Austin Animal Center, the largest no-kill municipal animal shelter in the United States, makes available its shelter animal outcomes dataset as patrt of the City of Austin's Open Data program. This post demonstrates how to extract the data from the City of Austin's Open Data portal using the requests library and convert the resulting JSON to a tabular pandas DataFrame. We will then enrich the data by applying feature engineering to the data to add more information, which should help improve the outcome prediction model.

Page 1 / 1