Processing math: 100%

Indefinite Integrals

As we noted in the previous sections on the Fundamental Theorem of Calculus and Antiderivatives, indefinite integrals are also called antiderivatives and are the same process. Indefinite integrals are expressed without upper and lower limits on the integrand, the notation f(x) is used to denote the function as an antiderivative of F. Therefore, f(x) dx=F(x).

For example, the integral x3 dx=14x4+C, just as we saw in the same example in the context of antiderivatives. The constant of integration is added to the result as before.

Below is a table of some of the more frequently occurring indefinite integrals.

cf(x) dx=cf(x) dx[f(x)+g(x)]dx=f(x)dx+g(x)dxk dx=kx+Cxn dx=xn+1n+1+C(n1)1x dx=ln|x|+Cex dx=ex+Cax dx=axlna+Csinx dx=cosx+Ccosx dx=sinx+Csec2x dx=tanx+Ccsc2x dx=cotx+C1x2+1 dx=tan1x+C11x2 dx=sin1x+Csinhx dx=coshx+Ccoshx dx=sinhx+C

Examples

In [9]:
from sympy import symbols, limit, diff, sin, cos, log, tan, sqrt, init_printing, plot, integrate, sinh
from mpmath import ln, e, pi

init_printing()
x = symbols('x')
y = symbols('y')

Example 1: Determine the general integral x2+x2 dx

We perform antidifferentiation of each term in the integral to compute the result:

x2+x2 dx=13x31x+C

Confirm our result using SymPy's integrate() function.

In [2]:
integrate(x ** 2 + x ** -2, x)
Out[2]:
x331x

Example 2: Find the general integral x412x3+14x2 dx

As in the previous example, we use antidifferentiation on each term:

x412x3+14x2 dx=15x518x4+18x22x
In [3]:
integrate(x ** 4 - (1/2) * x ** 3 + (1/4) * x - 2, x)
Out[3]:
0.2x50.125x4+0.125x22.0x

Example 3: Find the general integral (1x)(2+x2) dx

Start by expanding the terms, then find the antiderivative of each term:

2+x22xx3 dx=2x+13x3x214x4
In [5]:
integrate((1 - x) * (2 + x ** 2), x)
Out[5]:
x44+x33x2+2x

Example 4: Determine the general integral sinx+sinhx dx

Take the antiderivative of each term:

sinx+sinhx dx=cosx+coshx
In [10]:
integrate(sin(x) + sinh(x), x)
Out[10]:
cos(x)+cosh(x)

Example 5: Find the general integral 012xex dx

The last example involves a definite integral, which we previously encountered in the Fundamental Theorem of Calculus section. Find the antiderivative of each term:

012xex dx=x2ex|01(0)2e(0)(1)2e(1)=11e1=2+e1

Calculate 2e1 and verify the result with SymPy.

In [23]:
-2 + e ** -1
Out[23]:
mpf('-1.6321205588285577')
In [13]:
integrate(2 * x - e ** x, (x, -1, 0))
Out[13]:
1.63212055882856

References

Related Posts