As we noted in the previous sections on the Fundamental Theorem of Calculus and Antiderivatives, indefinite integrals are also called antiderivatives and are the same process. Indefinite integrals are expressed without upper and lower limits on the integrand, the notation ∫f(x) is used to denote the function as an antiderivative of F. Therefore, ∫f(x) dx=F′(x).
For example, the integral ∫x3 dx=14x4+C, just as we saw in the same example in the context of antiderivatives. The constant of integration is added to the result as before.
Below is a table of some of the more frequently occurring indefinite integrals.
∫cf(x) dx=c∫f(x) dx∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx∫k dx=kx+C∫xn dx=xn+1n+1+C(n≠−1)∫1x dx=ln|x|+C∫ex dx=ex+C∫ax dx=axlna+C∫sinx dx=−cosx+C∫cosx dx=sinx+C∫sec2x dx=tanx+C∫csc2x dx=−cotx+C∫1x2+1 dx=tan−1x+C∫1√1−x2 dx=sin−1x+C∫sinhx dx=coshx+C∫coshx dx=sinhx+CExamples¶
from sympy import symbols, limit, diff, sin, cos, log, tan, sqrt, init_printing, plot, integrate, sinh
from mpmath import ln, e, pi
init_printing()
x = symbols('x')
y = symbols('y')
Example 1: Determine the general integral ∫x2+x−2 dx¶
We perform antidifferentiation of each term in the integral to compute the result:
∫x2+x−2 dx=13x3−1x+CConfirm our result using SymPy's integrate()
function.
integrate(x ** 2 + x ** -2, x)
Example 2: Find the general integral ∫x4−12x3+14x−2 dx¶
As in the previous example, we use antidifferentiation on each term:
∫x4−12x3+14x−2 dx=15x5−18x4+18x2−2xintegrate(x ** 4 - (1/2) * x ** 3 + (1/4) * x - 2, x)
Example 3: Find the general integral ∫(1−x)(2+x2) dx¶
Start by expanding the terms, then find the antiderivative of each term:
∫2+x2−2x−x3 dx=2x+13x3−x2−14x4integrate((1 - x) * (2 + x ** 2), x)
Example 4: Determine the general integral ∫sinx+sinhx dx¶
Take the antiderivative of each term:
∫sinx+sinhx dx=−cosx+coshxintegrate(sin(x) + sinh(x), x)
Example 5: Find the general integral ∫0−12x−ex dx¶
The last example involves a definite integral, which we previously encountered in the Fundamental Theorem of Calculus section. Find the antiderivative of each term:
∫0−12x−ex dx=x2−ex|0−1(0)2−e(0)−(−1)2−e(−1)=−1−1−e−1=−2+e−1Calculate −2−e−1 and verify the result with SymPy.
-2 + e ** -1
integrate(2 * x - e ** x, (x, -1, 0))
References¶
Weisstein, Eric W. "Indefinite Integral." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IndefiniteIntegral.html